
INTRODUCING AMQ STREAMS :
DATA STREAMING WITH APACHE KAFKA

Ugo Landini
Principal Solution Architect

Paolo Patierno
Principal Software Engineer



What is Apache Kafka?

A publish/subscribe messaging system?

A streaming data platform?

A distributed, horizontally-scalable, fault-tolerant, commit log?



• Messages are sent to and received from a topic
• Topics are split into one or more partitions (aka shards)
• All actual work is done on partition level, topic is just a virtual object

• Each message is written only into a one selected partition
• Partitioning is usually done based on the message key
• Message ordering within the partition is fixed

• Retention
• Based on size / message age
• Compacted based on message key

Apache Kafka
Concepts



old new

0 1 2 3 4 5 6 7 8 9
1
0

1
1

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9
1
0

Producer

Partition 0

Partition 1

Partition 2

Topic & partitions
Kafka concepts



old new

0 1 2 3 4 5 6 7 8 9
1
0

1
1

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9
1
0

Consumer

Partition 0

Partition 1

Partition 2

Topic & partitions
Kafka concepts



Broker 1

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 2

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 3

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Leaders and followers spread across the cluster

High availability
Kafka concepts



Broker 1

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 2

T1 - P1

T1 - P2

T2 - P1

T2 - P2

Broker 3

T1 - P1

T1 - P2

T2 - P1

T2 - P2

If a broker with leader partition goes down, a new leader partition is elected on different node

High availability
Kafka concepts



AMQ Broker (ActiveMQ Artemis) AMQ Streams (Kafka)

Model “Smart broker, dumb clients” “Dumb broker, smart clients”

Durability Volatile or durable storage Durable storage

Storage duration Temporary storage of messages Potential long-term storage of messages

Message retention Retained until consumed Retained until expired or compacted

Consumer state Broker managed Client managed (can be stored in broker)

Selectors Yes, per consumer No

Stream replay No Yes

High-availability Replication Replication

Protocols AMQP, MQTT, OpenWire, Core, STOMP Kafka protocol

Delivery guarantees Best-effort or guaranteed Best-effort or guaranteed

AMQ Broker & AMQ Streams
Key differences



AMQ Streams
Why should you use AMQ Streams ?

● Scalability and performance
○ Designed for horizontal scalability

● Message ordering guarantee
○ At partition level

● Message rewind/replay
○ “Long term” storage
○ Allows to reconstruct application state by replaying the messages
○ Combined with compacted topics allows to use Kafka as key-value store



AMQ Streams
What’s the catch ?

● Kafka protocol is non-trivial to proxy
○ Clients need access to all brokers in the cluster
○ Producers/consumers might need to maintain large number of TCP connections
○ Proxying via HTTP REST or AMQP could be a solution

● Dumb broker, smart clients
○ Carefully decide the “right” number of partitions for each topic
○ Adding partitions can change destination partition for “keyed” messages
○ Removing partitions is not possible



AMQ Streams on OpenShift

● Based on OSS project called Strimzi
● Provides:

○ Docker images for running Apache Kafka and Zookeeper
○ Tooling for managing and configuring Apache Kafka clusters and topics

● Follows the Kubernetes “operator” model
● OpenShift 3.9 and higher



AMQ Streams on OpenShift
What is Strimzi ?

● Open source project focused on running Apache Kafka on Kubernetes and OpenShift
● Licensed under Apache License 2.0
● Web site: http://strimzi.io/
● GitHub: https://github.com/strimzi
● Slack: strimzi.slack.com
● Mailing list: strimzi@redhat.com
● Twitter: @strimziio

http://strimzi.io/
https://github.com/strimzi
https://join.slack.com/t/strimzi/shared_invite/enQtMzU2Mjk3NTgxMzE5LTYyMTUwMGNlMDQwMzBhOGI4YmY4MjhiMDgyNjA5OTk2MTFiYjc4M2Q3NGU1YTFjOWRiMzM2NGMwNDUwMjBlNDY
mailto:strimzi@redhat.com
https://twitter.com/strimziio


AMQ Streams on OpenShift
The challenges

● Apache Kafka is *stateful* which means we require … 
○ … a stable broker identity
○ … a way for the brokers to discover each other on the network
○ … durable broker state (i.e., the messages)
○ … the ability to recover broker state after a failure

● All the above are true for Apache Zookeeper as well
● StatefulSets, PersistentVolumeClaims, Services can help but … 



It’s not easy!



AMQ Streams on OpenShift
Goals

● Simplifying the Apache Kafka deployment on OpenShift
● Using the OpenShift native mechanisms for...

○ Provisioning the cluster
○ Managing the topics

● … thereby removing the need to use Kafka command-line tools
● Providing a better integration with applications running on OpenShift

○ microservices, data streaming, event-sourcing, etc.



AMQ Streams on OpenShift
The “Operator” model

● An application used to create, configure and manage other complex 
applications

○ Contains specific domain / application knowledge
● Operator takes as input Config Maps or Custom Resource Definitions

○ User describes the desired state
○ Operator applies this state to the application

● It watches the *desired* state and the *actual* state … 
○ … taking appropriate actions

Observe

Analyze

Act



AMQ Streams on OpenShift
Config Map versus Custom Resource Definitions

● Operators are currently using Config Maps for configuration
○ Main advantage of Config Maps is no need for special permissions to install 

Strimzi/AMQ Streams on OpenShift
● CRDs have some advantages as well

○ Flexible data structure
○ Possibility to set permissions for the CRD resources

● Adding support for CRDs is on backlog for the future



Cluster Operator
Creating and managing Apache Kafka clusters

Zookeeper 

Kafka

Cluster 
Operator

Config
Map

Manages



Node 1

Kafka StatefulSet

Zookeeper StatefulSet

kafka-broker-0

Cluster 
Operator

MyCluster
Node 5Node 4Node 3

Node 2

Topic Operator

zookeeper-0 zookeeper-1 zookeeper-2

kafka-broker-1 kafka-broker-2 kafka-broker-3 kafka-broker-4

MyTopic1 MyTopic2

Cluster Architecture
Overview



Node 1

kafka-broker-0

Cluster 
Operator

MyCluster
Node 5Node 4Node 3

Zookeeper StatefulSet

Kafka StatefulSet

Node 2

Topic Operator

zookeeper-0 zookeeper-1 zookeeper-2

kafka-broker-1 kafka-broker-2 kafka-broker-3 kafka-broker-4

MyTopic1 MyTopic2

Cluster Architecture
Deploying a cluster



Cluster Operator
Creating cluster

● Able to deploy two types of clusters
○ Kafka (alongside a Zookeeper ensemble)
○ Kafka Connect (even with S2I support for custom connector plugins)

● The ConfigMap allows to specify
○ Number of nodes
○ Brokers configuration
○ Healthchecks
○ Metrics exported for Prometheus

● Ephemeral or persistent storage



Cluster Operator
Managing cluster

● Modifying the ConfigMap for updating the cluster
○ Scale up/down
○ Configuration changes (rolling updates)

● Deleting the ConfigMap for de-provisioning the cluster
○ Persisted data will be deleted according to the user configuration



DEMO : KAFKA CLUSTER 
DEPLOYMENT



Topic Operator
Creating and managing Kafka topics

Zookeeper 

Kafka

Topic 
Operator

Config
Map

Manages topics



Node 1

kafka-broker-0

Cluster 
Operator

MyCluster
Node 5Node 4Node 3

Zookeeper StatefulSet

Kafka StatefulSet

Node 2 zookeeper-0 zookeeper-1 zookeeper-2

kafka-broker-1 kafka-broker-2 kafka-broker-3 kafka-broker-4

MyTopic1 MyTopic2

Topic Operator

Cluster Architecture
Managing topics



Topic Operator
Creating and managing Kafka topics

● Topics can be created by…
○ Writing a ConfigMap
○ Interacting directly with Kafka cluster
○ Automatically by others (Kafka Connect, Kafka Streams)

● Consistency is handled by using 3-way diff
○ Our own Zookeeper store
○ Apache Kafka/Zookeeper
○ ConfigMaps



Topic Operator
Creating and managing Kafka topics

Zookeeper 
(Topic Operator’s own storage)

Kafka topics

Topic Operator
(3-way diff)

Config Map



DEMO : TOPICS MANAGEMENT



AMQ Streams on OpenShift
Planned for 1.0

● Detailed Kafka configuration (buffers, topic defaults, etc.)
● TLS encryption and authentication
● Authentication options

○ TLS Client Authentication
○ SASL-SCRAM mechanism with credentials stored in Zookeeper
○ SASL-PLAIN mechanisms with credentials stored in OpenShift secret

● Authorization using ACL rules stored in Zookeeper
● Resources configuration (memory and CPU limits, ...)
● Scaling (with manual partition reassignment)
● Managing topics



AMQ Streams on OpenShift
Planned after 1.0

● Kafka updates
● Automated partition balancing and automated scaling
● Additional authentication options

○ Using Red Hat SSO, LDAP, Kubernetes tokens
● Exposing Kafka cluster outside of OpenShift
● Service broker integration
● Integrated AMQP, MQTT and HTTP bridge
● Integrated Schema registry
● MirrorMaker Operator



Summary
Click to add subtitle

● AMQ Streams is distribution of Apache 
Kafka included as part of the AMQ product

● Simplifies the deployment, management 
and monitoring of Kafka on OpenShift using 
the Operator approach

● Fully open source based on Strimzi
● Available now as a Developer Preview 

Signup: http://amq.io/amqstreams-signup
● Beta tentatively planned for Summer 2018 

with GA in late Fall 2018

Standard 
Protocols

AMQ
Broker

AMQ Online

Polyglot 
Clients

Common 
Mgmt

Red Hat AMQ

AMQ 
Interconnect

AMQ
Streams

http://amq.io/amqstreams-signup


Resources

● Strimzi : http://strimzi.io/
● Apache Kafka : https://kafka.apache.org/
● AMQ Streams Dev Preview : http://amq.io/amqstreams-signup
● Demo : https://github.com/ppatierno/ocp-roadshow-2018

http://strimzi.io/
https://kafka.apache.org/
http://amq.io/amqstreams-signup
https://github.com/ppatierno/ocp-roadshow-2018


THANK YOU

plus.google.com/+RedHat

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHatNews


